عوامل مؤثر بر بهبود نگرش و قصد استفاده از خدمات هوش مصنوعی در کاربران باشگاه‌های بدنسازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، گروه مدیریت ورزشی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران.

2 دکتری، گروه مدیریت ورزشی، دانشکدة تربیت بدنی و علوم ورزشی، دانشگاه تهران، تهران، ایران.

3 کارشناس ارشد، گروه آﺳﯿﺐ‌ﺷﻨﺎﺳﯽ ورزﺷﯽ و ﺣﺮﮐﺎت اﺻﻼﺣﯽ، دانشکدة تربیت بدنی و علوم ورزشی، دانشگاه پیام نور، تهران، ایران.

10.30473/arsm.2025.71921.3904

چکیده

هدف کلی پژوهش حاضر بررسی عوامل مؤثر بر بهبود نگرش و قصد استفاده از خدمات هوش مصنوعی در کاربران باشگاه­های بدنسازی بود. پژوهش حاضر به روش کمّی انجام شد و تعداد 384 نفر از کاربران باشگاه­های بدنسازی منطقه یک شهر تهران به روش در دسترس انتخاب و پرسشنامه کاربرد هوش مصنوعی در خدمات ورزشی توسط ‏‏(چین و همکاران، ۲۰۲۲) را تکمیل کردند. نتایج مدل‌سازی معادلات ساختاری با رویکرد حداقل مربعات جزئی نشان داد که سودمندی درک شده، سهولت استفاده و اهمیت ورزش بر نگرش نسبت به استفاده از خدمات هوش مصنوعی تأثیر مثبت معنادار دارد. همچنین، نگرش نسبت به استفاده از خدمات هوش مصنوعی بر قصد استفاده از خدمات هوش مصنوعی تأثیر مثبت معنادار دارد. بنابراین، با پررنگ­تر شدن نقش هوش مصنوعی در ورزش پیشنهاد می­شود باشگاه­های بدنسازی در حوزه سخت­افزار و نرم­افزار با بهره­گیری از هوش مصنوعی توسعه پیدا کنند.

کلیدواژه‌ها

موضوعات


Ajzen, I., & Fishbein, M. (1975). A Bayesian analysis of attribution processes. Psychological Bulletin, 82(2), 261–277. https://doi.org/10.1037/h0076477
Akbari, M., & Pouladian, H. (2021). Factors affecting acceptance of 5G technology among Iranian students. Iranian Journal of Engineering Education, 23(90), 151-131. https://doi.org/10.22047/ijee.2021.258981.1794. (Persian).
Altes, G. C., Ong, A. K. S., & German, J. D. (2024). Determining factors affecting Filipino consumers’ behavioral intention to use cloud storage services: An extended technology acceptance model integrating valence framework. Heliyon, 10(4), e26447. https://doi.org/10.1016/j.heliyon.2024.e26447
Artificial Intelligence Decision-Making in Shopping Patterns: Consumer Values, Cognition, and Attitudes. (2022). Economics, Management, and Financial Markets, 17(1), 31. https://doi.org/10.22381/emfm17120222
Aryadoost, H., Farahani, A., & Safania, A. M. (2025). Designing a Model for Developing Public Sport with an Emphasis on Walking. Applied Research of Sport Management, 13(4), 103-122. (Persian) doi: 10.30473/arsm.2025.69313.3815.
Atwal, G., & Bryson, D. (2021). Antecedents of intention to adopt artificial intelligence services by consumers in personal financial investing. Strategic Change, 30(3), 293-298. https://doi.org/10.1002/jsc.2412
Canals, J., & Heukamp, F. (eds.). (2020). The Future of Management in an AI World: Redefining Purpose and Strategy in the Fourth Industrial Revolution. Springer International Publishing.
Chin, J.-H., Do, C., & Kim, M. (2022). How to Increase Sport Facility Users’ Intention to Use AI Fitness Services: Based on the Technology Adoption Model. International Journal of Environmental Research and Public Health, 19(21), 14453. https://doi.org/10.3390/ijerph192114453
Chocarro, R., Cortiñas, M., & Marcos-Matás, G. (2021). Teachers’ attitudes towards chatbots in education: a technology acceptance model approach considering the effect of social language, bot proactiveness, and users’ characteristics. Educational Studies, 49(2), 295–313. https://doi.org/10.1080/03055698.2020.1850426
Davis, Fred D. (1989a). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008
Davis, Fred D. (1989b). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008
Enholm, Ida Merete; Papagiannidis, Emmanouil; Mikalef, Patrick; & Krogstie, John. (2022). Artificial Intelligence and Business Value: a Literature Review. Information Systems Frontiers, 24(5), 1709-1734. https://doi.org/10.1007/s10796-021-10186-w
Farahani, A., Ghorbani Ghahfarokhi, L., Sadr, M. M., & Mirmohammadian Toutkaleh, S. F. (2025). Identifying the Factors that Determine the Alignment of Information Technology with Organizational Strategies in Iranian Sports Federations. Applied Research of Sport Management, 14(1), 173-190. (Persian) doi: 10.30473/arsm.2025.71972.3907
Farrokhi, A.R., Farahbakhsh, R., Rezazadeh, J., & Minerva, R. (2021). Application of Internet of Things and artificial intelligence for smart fitness: A survey. Computer Networks, 189, 107859. https://doi.org/10.1016/j.comnet.2021.107859
Hammes, F., Hagg, A., Asteroth, A., & Link, D. (2022). Artificial Intelligence in Elite Sports—A Narrative Review of Success Stories and Challenges. Frontiers in Sports and Active Living, 4. https://doi.org/10.3389/fspor.2022.861466
Kang, K. Y., & Jin, Hyun-Jeong. (2007). Influences of Consumers’ Fashion Innovativeness and Technological Innovativeness on Attitudes and Buying Intention toward Smart Clothing. Fashion & Textile Research Journal, 9, 35-40.
Keiper, Margaret C., Fried, G., Lupinek, J., & Nordstrom, H. (2023). Artificial intelligence in sport management education: Playing the AI game with ChatGPT. Journal of Hospitality, Leisure, Sport & Tourism Education, 33, 100456. https://doi.org/10.1016/j.jhlste.2023.100456
Kietzmann, J., Paschen, J., & Treen, E. (2018). Artificial Intelligence in Advertising: How Marketers Can Leverage Artificial Intelligence Along the Consumer Journey. Journal of Advertising Research, 58(3), 263-267. https://doi.org/10.2501/JAR-2018-035
Ko, J.G. (2009). Relationship between Elementary School Children’s after-School Exercise Participation and School Life Adjustment. Gwangju National University of Education, Gwangji, Korea.
Li, K. (2022). Tennis Technology Recognition and Training Attitude Analysis Based on Artificial Intelligence Sensor. (C. Venkatesan, Ed.), Journal of Sensors, 2022, 1-7. https://doi.org/10.1155/2022/6594701
Lim, K. H., & Benbasat, I. (2000). The Effect of Multimedia on Perceived Equivocality and Perceived Usefulness of Information Systems. MIS Quarterly, 24(3), 449. https://doi.org/10.2307/3250969
Lin, C., & Bhattacherjee, A. (2010). Extending technology usage models to interactive hedonic technologies: a theoretical model and empirical test. Information Systems Journal, 20(2), 163–181. Portico. https://doi.org/10.1111/j.1365-2575.2007.00265.x
Lu, L., Yang, S., & Li, Q. (2024). The interaction of digital economy, artificial intelligence and sports industry development --based on China PVAR analysis of provincial panel data. Heliyon, 10(4), e25688. https://doi.org/10.1016/j.heliyon.2024.e25688
Lunney, A., Cunningham, N. R., & Eastin, M. S. (2016). Wearable fitness technology: A structural investigation into acceptance and perceived fitness outcomes. Computers in Human Behavior, 65, 114–120. https://doi.org/10.1016/j.chb.2016.08.007
Miville, N.D. (2005). . Factors Influencing the Diffusion of Innovation and Managerial Adoption of New Technology. Nova Southeastern University, Fort Lauderdale, FL.
Nagy, S., & Hajdu, N. (2021). Consumer Acceptance of the Use of Artificial Intelligence in Online Shopping: Evidence From Hungary. Www.Amfiteatrueconomic.Ro, 23(56), 155. https://doi.org/10.24818/ea/2021/56/155
Rojo-Ramos, J., González-Becerra, M. J., Gómez-Paniagua, S., & Adsuar, J. C. (2022). Satisfaction with Physical Activity among Students in the Last Cycle of Primary Education in Extremadura. International Journal of Environmental Research and Public Health, 19(11), 6702. https://doi.org/10.3390/ijerph19116702
Russell, S. J., & Norvig, P. (2021). Artificial intelligence: a modern approach (Fourth edition). Pearson.
Taylor, C B., Sallis, J. F., & Needle, R. (1985). The relation of physical activity and exercise to mental health. Public Health Reports, 100(2), 195-202.
Ulrich, P., Frank, V., & Kratt, M. (2021). Adoption of artificial intelligence technologies in German SMEs - Results from an empirical study (pp. 76-84). Virtus Interpress. https://doi.org/10.22495/cgsetpt13
Wang, C., Ahmad, S. F., Bani Ahmad Ayassrah, A. Y. A., Awwad, E. M., Irshad, M., Ali, Y. A., Al-Razgan, M., Khan, Y., & Han, H. (2023). RETRACTED: An empirical evaluation of technology acceptance model for Artificial Intelligence in E-commerce. Heliyon, 9(8), e18349. https://doi.org/10.1016/j.heliyon.2023.e18349
Washif, J., Pagaduan, J., James, C., Dergaa, I., & Beaven, C. (2024). Artificial intelligence in sport: Exploring the potential of using ChatGPT in resistance training prescription. Biology of Sport, 41(2), 209–220. https://doi.org/10.5114/biolsport.2024.132987